

C–H Cleavage and Double Alkyl Additions to the Disulfido Ligand in Dicyanido-Bridged Ru₂S₂ Complexes

Sumito Ishizu, Hiroyasu Sugiyama, Brian K. Breedlove,* and Kazuko Matsumoto*,†

Department of Chemistry, School of Science and Engineering, and Advanced Research Institute of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Received December 22, 2006

Novel dicyanido-bridged dicationic Ru^{III}SSRu^{III} complexes [{Ru(P(OCH₃)₃)₂}₂(μ -S₂)(μ -X)₂{ μ -m-C₆H₄(CH₂CN)₂}]-(CF₃SO₃)₂ (**4**, X = Cl, Br) were synthesized by the abstraction of the two terminal halide ions of [{RuX(P(OCH₃)₃)₂}₂-(μ -S₂)(μ -X)₂] (**1**, X = Cl, Br) followed by treatment with *m*-xylylenedicyanide. **4** reacted with 2,3-dimethylbutadiene to give the C₄S₂ ring-bridged complex [{Ru(P(OCH₃)₃)₂}₂{ μ -SCH₂C(CH₃)=C(CH₃)CH₂S}(μ -X)₂{ μ -m-C₆H₄(CH₂-CN)₂}](CF₃SO₃)₂ (**6**, X = Cl, Br). In addition, **4** reacted with 1-alkenes in CH₃OH to give alkenyl disulfide complexes [{Ru(P(OCH₃)₃)₂}₂{ μ -SS(CH₂C=CHR)}(μ -Cl)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃) (**7**: R = CH₂CH₃, **9**: R = CH₂-CH₂CH₃) and alkenyl methyl disulfide complexes [{Ru(P(OCH₃)₃)₂}₂{ μ -S(CH₃SO₃)₂ (**8**: R = CH₂CH₃, **10**: R = CH₂CH₂CH₃) via the activation of an allylic C–H bond followed by the elimination of H⁺ or condensation with CH₃OH. Additionally, the reaction of **4** with 3-penten-1-ol gave [{Ru(P(OCH₃)₃)₂]₂{ μ -SS(CH₂C=CHCH₂OH)}(μ -Cl)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃) (**11**) via the elimination of H⁺ and [{Ru(P(OCH₃)₃)₂]₂(μ -SCH₂CH=CHCH₂OH)}(μ -Cl)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (**12**) via the intramolecular elimination of a H₂O molecule. **12** was exclusively obtained from the reaction of **4** with 4-bromo-1-butene.

Introduction

C-H cleavage and C-S bond formation on the bridgingdisulfide ligand in [{RuCl(P(OCH₃)₃)₂}₂(μ -S₂)(μ -X)₂] (1) (X = Cl (1-Cl), Br (1-Br)) having the RuSSRu core has been developed by our group.¹⁻⁸ Free disulfur is too reactive toward a variety of substrates and unstable to study its reactivity directly; however, through the systematic study of 1 with unsaturated molecules, such as ketones,^{3,4} alkenes,^{5,6} alkynes,⁷ and dienes,⁸ the reactivity of the disulfido ligand

- (1) Matsumoto, T.; Matsumoto, K. Chem. Lett. 1992, 559-562.
- (2) Matsumoto, K.; Matsumoto, T.; Kawano, M.; Ohnuki, H.; Shichi, Y.; Nishide, T.; Sato, T. J. Am. Chem. Soc. 1996, 118, 3597–3609.
- (3) Matsumoto, K.; Uemura, H.; Kawano, M. Inorg. Chem. 1995, 34, 658–662.
- (4) Sugiyama, H.; Hossain, Md. M.; Lin, Y.-S.; Matsumoto, K. Inorg. Chem. 2000, 39, 3948.
- (5) Hossain, Md. M.; Lin, Y.-S.; Sugiyama, H.; Matsumoto, K. J. Am. Chem. Soc. 2000, 122, 172–173.
- (6) Sugiyama, H.; Hossain, Md. M.; Lin, Y.-S.; Matsumoto, K. Inorg. Chem. 2001, 40, 5547–5552.
- (7) Sugiyama, H.; Moriya, Y.; Matsumoto, K. Organometallics 2001, 20, 5636–5641.
- (8) Sugiyama, H.; Lin, Y.-S.; Matsumoto, K. Angew. Chem., Int. Ed. 2000, 39, 4058–4061.

in the Ru₂S₂ core has been established. From parent complex 1, the dicationic complexes $[{Ru(P(OCH_3)_3)_2(CH_3CN)}_2 (\mu$ -S₂) $(\mu$ -Cl)₂]²⁺ (2) with a cis Ru^{III}SSRu^{III} and [{Ru- $(P(OCH_3)_3)_2(CH_3CN)_3\}_2(\mu-S_2)^{4+}$ (3) with a trans Ru^{III}SSRu^{III} core were obtained by abstraction of chloride ions with the addition of 2 and 4 equiv of Ag⁺, respectively. Because of the open cavity structure of the Ru_2S_2 core in 3 compared to 2, 3 is reactive toward a wider variety of substrates. For instance, 2 undergoes only a Diels-Alder type cycloaddition to form a C_4S_2 ring moiety,⁸ whereas **3** cleaves C–H bonds in various hydrocarbons to form C-S bonds with the disulfido ligand (Scheme 1). The differences in the electronic state and the structural difference of the Ru₂S₂ core affect the Lewis acidity of the disulfido ligand and cause the difference in reactivity. Several other systems are known that have also the Ru^{III}SSRu^{III} core,⁹⁻¹² but these do not exhibit any reactivity on the disulfido ligand. Therefore, the coligands in 2 and 3 appear to be essential.

- (10) Elder, R. C.; Trukula, M. Inorg. Chem. 1977, 16, 1048.
- (11) Amarasekera, J.; Rauchfuss, T. B.; Rheingold, A. L. Inorg. Chem. 1987, 26, 2017.
- (12) Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R. Inorg. Chem. 1987, 26, 3328.

10.1021/ic062460k CCC: \$37.00 © 2007 American Chemical Society Published on Web 03/29/2007

^{*}To whom correspondence should be addressed. E-mail: brianbreedlove@hotmail.com (B.K.B), kmatsu@yf6.so-net.ne.jp (K.M).

[†] Present address: 3-9-12-105, Daizawa, Setagaya-ku, Tokyo 155-0032, Japan, Tel and Fax: +81-3-3413-5352.

⁽⁹⁾ Brulet, C. R.; Ishied, S. S.; Taube, H. J. Am. Chem. Soc. 1973, 95, 4758.

Scheme 1. Reactions of the Ru₂S₂ 2 and 3 with Organic Molecules

 $\mathbf{Ru} = \operatorname{Ru}(\operatorname{P(OCH_3)_3})_2(\operatorname{CH_3CN})_n (n = 2 \text{ or } 3)$ solvent: $\operatorname{CH_3CN}$

In our previous studies, although **3**, which has a trans Ru^{III}-SSRu^{III} core, is involved in a variety of C–H cleavage and C–S bond forming reactions, **3** is often reduced to the trans Ru^{II}SSRu^{III} complex [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂(μ -S₂)]³⁺ at the same time as C–S bond formation, and the Ru^{II}SSRu^{III} complex is not reactive toward unsaturated substrates. The reactivity of the disulfide RuSSRu complex is affected by many factors, such as the cis–trans of the core structure, the steric congestion around the RuSSRu core, and the nature of the ligands, especially those trans to the disulfide. To study these effects, we synthesized *cis*-Ru^{III}SSRu^{III} complexes, which have a dicyanido-bridging ligand coordinated trans to the disulfido ligand. The dicyanido-bridged complexes are very reactive toward olefins, and two different alkyl additions occurred on the two sulfur atoms of the same disulfido ligand.

Experimental Section

All of the reactions were carried out under an Ar or N_2 atmosphere using standard Schlenk line technique. Dry and oxygen-free solvents were purchased from Kanto Chemical Co. Acetonitrile- d_3 was dried over CaH₂ and distilled by trap-to-trap distillation prior to use. The reagents were purchased and used without further purification. **1-Cl** was prepared according to the procedure as described in the literature, whereas **1-Br** was converted from **1-Cl** by reacting with Me₃SiBr.¹³ Through the Experimental Section and the Results and Discussion section, the same compound numbering is used for both chloride and bromide congeners. The NMR spectra were recorded on JEOL

Lambda-270, Lambda-500, and Avance-400 spectrometers. The chemical shift (δ) is referenced to TMS for ¹H NMR and 85% H₃PO₄ for ³¹P NMR. Elemental analysis was performed using a Perkin-Elmer PE2000 microanalyzer at Material Characterization Central Laboratory in Waseda University. Electrospray ionization mass spectra were recorded using a Finnigan LCQ DECA spectrometer. The ESI source was operated at 4.25 kV, the capillary heater was set to 453 K, and the experiments were performed in positive ion mode.

Svnthesis of $[{Ru(P(OCH_3)_3)_2}_2(\mu-S_2)(\mu-X)_2{\mu-m-C_6H_4-}$ $(CH_2CN)_2$](CF₃SO₃)₂ (4) (X = Cl, Br). To a CH₃OH (1.0 mL) solution of $[{Ru(P(OCH_3)_3)_2Cl}_2(\mu-S_2)(\mu-Cl)_2]$ (1-Cl) (90.4 mg, 0.10 mmol) was added AgCF₃SO₃ (51.2 mg, 0.20 mmol), and the mixture was stirred at ambient temperature for 12 h. The solvent was removed by reduced pressure, and the residue was washed with Et₂O (10 mL) and dried in vacuo. The residue was dissolved in CH₂Cl₂, and *m*-xylylenedicyanide was added. The solution was stirred at ambient temperature for 12 h. Volatiles were removed under reduced pressure, and the remaining solid was washed three times with DME (10 mL) and dried in vacuo. The residue was recrystallized from CH₂Cl₂/DME to give green crystals of [{Ru- $(P(OCH_3)_3)_2_2(\mu-S_2)(\mu-Cl)_2\{\mu-m-C_6H_4(CH_2CN)_2\}](CF_3SO_3)_2$ (4-Cl). Yield: 61%. Anal. Calcd for C₂₄H₄₄F₆N₂O₁₈P₄Ru₂S₄Cl₂: C, 22.38; H, 3.44; N, 2.18. Found: C, 22.47; H, 3.45; N, 2.10. ¹H NMR (CDCl₃, 270 MHz, 233.3 K, δ): 3.80–3.90 (br, 36H, P(OCH₃)₃), 4.75 (br, 4H, CH_2CN), 7.24–7.32 (m, 2H, C_6H_5), 7.35–7.43 (m, 1H, C₆H₅), 8.12 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CDCl₃, 109 MHz, 233.3 K, δ): 120.0 (s).

4-Br: [{Ru(P(OCH3)3)₂}₂(μ -S₂)(μ -Br)₂{ μ -m-C₆H₄(CH₂CN)₂}]-(CF₃SO₃)₂. Yield: 58%. Anal. Calcd for C₂₄H₄₄F₆N₂O₁₈P₄Ru₂S₄-Br₂: C, 20.94; H, 3.22; N, 2.03. Found: C, 21.12; H, 3.26; N, 2.01. ¹H NMR (CDCl₃, 270 MHz, 243.3 K, δ): 3.80–3.90 (br, 36H, P(OCH₃)₃), 4.74 (br, 4H, CH₂CN), 7.25–7.37 (m, 2H, C₆H₅), 7.37–7.42 (m, 1H, C₆H₅), 8.28 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CDCl₃, 109 MHz, 243.3 K, δ): 121.0 (s).

Synthesis of $[{Ru(P(OCH_3)_3)_2}_2(\mu-S_2)(\mu-X)_2\{\mu-m-C_6H_4-(CH_2CN)_2\}](CF_3SO_3)$ (5) (X = Cl, Br). To a CH₂Cl₂ (1.0 mL) solution of 4-Cl (128.8 mg, 0.10 mmol) was added triphenylsilane (51.2 mg), and the mixture was stirred at ambient temperature for 3 days, followed by the removal of volatiles by reduced pressure. The residue was washed with Et₂O (10 mL) and dried in vacuo. The remaining solid was washed three times with Et₂O (10 mL) and dried in vacuo. The residue was recrystallized from CH₂Cl₂/ Et₂O to give brown crystals of [{Ru(P(OCH_3)_3)_2}_2(\mu-S_2)(\mu-Cl)_2-{ $\mu-m-C_6H_4(CH_2CN)_2$ }](CF₃SO₃) (5-Cl). Yield: 61%. Anal. Calcd (%) for C₂₃H₄₄F₃N₂O₁₅P₄Ru₂S₃Cl₂: C, 24.26; H, 3.89; N, 2.46. Found: C, 24.91; H, 4.02; N, 2.08.

5-Br: Brown crystals of [{Ru(P(OCH₃)₃)₂}₂(μ -S₂)(μ -Br)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃) were isolated. Yield: 58%. Anal. Calcd (%) for C₂₃H₄₄F₃N₂O₁₅P₄Ru₂S₃Br₂: C, 22.50; H, 3.61; N, 2.28. Found: C, 22.87; H, 3.43; N, 2.09.

Synthesis of [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂C(CH₃)=C(CH₃)-CH₂S)(μ -X)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (6) (X = Cl, Br). To a CH₂Cl₂ (1.0 mL) solution of 4-Cl (128.8 mg, 0.10 mmol) was added 2,3-dimethyl-1,3-butadiene (0.10 mL), and the mixture was stirred at ambient temperature for 3 h followed by the removal of volatiles in vacuo. The residue was washed with Et₂O (10 mL) and dried in vacuo. The residue was recrystallized from CH₂Cl₂/ DME to give pale-green crystals of [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂C-(CH₃)=C(CH₃)CH₂S)(μ -Cl)₂{ μ -C₆H₄(CH₂CN)₂}] (CF₃SO₃)₂ (6-Cl). Yield: 56%. Anal. Calcd (%) for C₃0H₅₄F₆N₂O₁₈P₄Ru₂S₄Cl₂: C, 26.30; H, 3.97; N, 2.04. Found: C, 26.28; H, 3.87; N, 1.96. ¹H NMR (CD₃OD, 270 MHz, 233.3 K, δ): 1.92 (s, 6H, CCH₃), 3.41

⁽¹³⁾ Ishizu, S.; Matsumoto, K. Unpublished results.

Table 1. Summary of Crystallographic Data

	4-Cl	4-Br	5	-Cl		5-Br				4-Cl	4-Br	5-Cl	5-Br
formula	$C_{24}H_{44}Cl_2F_6N$	$C_{24}H_{44}Br_2F_6N$	C ₂₃ H ₄₄	Br ₂ F ₃ N Ru ₂ S ₂	C ₂₃ H	$I_{44}Cl_2F_3N$ $P_4Ru_2S_2$	$d_{\rm calc}$	_{ed} (g•cm ⁻³)	1.7	51	1.929	1.785	1.938
fw	1287.77	1376.69	1138.7	0	1227	.62	и (r	nm^{-1})	1.1	17	2.724	1.213	2.994
cryst syst	triclinic	triclinic	orthorh	nombic	tricli	nic	T (F	$\tilde{\mathbf{x}}$	293	3(2)	293(2)	293(2)	123(2)
No.	P1 (No. 2)	P1 (No. 2)	$Pca2_1$	(No. 29)	P1 (1	No. 2)	diff	racto-	SN	IART	SMART	SMART	SMART
	. ,	· /				,	met	er	100	00	1000	1000	1000
a (Å)	12.856(7)	12.960(2)	18.818	(12)	12.29	984(15)	abs	corr	SA	DABS	SADABS	SADABS	SADABS
b (Å)	14.168(8)	13.624(2)	13.172	(8)	13.03	334(15)	refl	ns	10	463	9985	7492	8951
							(tot	al)					
c (Å)	14.389(8)	14.275(2)	17.090	(10)	13.53	373(16)	refl $2\sigma($	$\frac{1}{F_o^2} > F_o^2$	46	34	8386	5870	7280
α (deg)	105.010(10)	104.220(3)			82.0	17(2)	para	ums	49	1	491	459	459
β (deg)	93.850(10)	94.368(3)			78.20	58(2)	$R1^{a}$		0.0	867	0.0636	0.0541	0.0437
γ (deg)	103.128(10)	101.795(3)			89.18	81(2)	wR2	2^b	0.1	989	0.1796	0.1342	0.1086
$V(Å^3)$	2443(2)	2370.2(7)	4236(4)	2103	.8(4)	GO	F ^c	1.0	25	1.078	1.017	1.024
Ζ	2	2	4		2								
	6-Cl	6-Br		7		8			(5-Cl	6-Br	7	8
formula	$C_{30}H_{54}Cl_2F_6N_2O_{18}P_4Ru_2S_4$	$C_{30}H_{54}Br_2F_6N$ $_{2}O_{18}P_4Ru_2S_4$	C ₂₈ H ₅₃ 2O15P4	$_{3}Cl_{2}F_{3}N$ Ru ₂ S ₃	C ₃₀ H 2O18	$_{56}Cl_2F_6N$ $P_4Ru_2S_4$	d_{cale}	d (g•cm ^{−3})	1.7	47	1.938	1.724	1.748
fw	1369.91	1376.69	1207.8	32	1371.	.93	μ (n	$1m^{-1}$)	1.0	53	2.588	1.110	1.052
cryst syst	triclinic	triclinic	triclini	ic	triclin	nic	T (K	.)	293	8(2)	123(2)	120(2)	120(2)
No.	P1 (No. 2)	P1 (No. 2)	P1 (Ne	o. 2)	<i>P</i> 1 (N	lo. 2)	diffi	acto-	SM	ART	SMART	SMART	SMART
							mete	er	100	00	1000	1000	1000
a (Å)	8.982(6)	9.367(4)	11.906	5(5)	12.21	03(18)	abs	corr	SA	DABS	SADABS	SADABS	SADABS
<i>b</i> (A)	13.158(8)	11.691(5)	13.125	5(6)	13.23	2(2)	reflr	15	11	268	10 468	9857	11 153
()	22 100/14	22 000(11)	15 101		16.00		(tota	l)					0.455
<i>c</i> (A)	23.180(14)	23.899(11)	15.181	(6)	16.28	3(2)	reflr	$F_0^2 > F_0^2$	717	9	7900	6883	8657
(dag)	104 245(12)	102 (01(9)	80.022	(7)	102.2	59(12)	20(1	"o ²)	517	,	517	505	517
β (deg)	104.243(12) 07.282(11)	102.001(8) 00.426(0)	86.004	(/) (8)	105.2	30(12)		ms	0.0	704	0.0754	303 0.0727	0.0626
p (deg) v (deg)	97.303(11) 96.312(12)	99.420(9) 94.774(9)	85.090	5(8)	94.00	7(12)	WR	b	0.0	830	0.1897	0.1987	0.0020
$V(Å^3)$	2605(3)	25004(19)	2326.7	(0)	2607	(3)	GOI	- ⊐c	1.0	67	1.070	1 047	1.046
Z	2	2	2 2 2 2 0 . 1	(17)	2	(5)	001		1.0	07	1.070	1.017	1.010
	9	10		11		12				9	10	11	12
formula	$C_{29}H_{55}Cl_2F_3N$ $_2O_{15}P_4Ru_2S_3$	$C_{31}H_{57}Cl_2F_6N_2O_{18}$	$P_4Ru_2S_4$	C ₂₈ H ₅₀ C 2O ₁₈ P ₄ R	l_2F_6N u_2S_4	C ₂₇ H ₅₁ Cl ₂ 2O ₁₆ P ₄ Ru	${}_{2}F_{3}N$ ${}_{2}S_{3}$	d_{calcd} (g·cm)	-3)	1.687	1.728	1.826	1.755
fw	1221.85	1384.95		1341.86		1209.80		$\mu ({\rm mm^{-1}})$		1.074	1.031	1.122	1.130
cryst syst	triclinic	triclinic		triclinic		triclinic		$T(\mathbf{K})$		120(2)	120(2)	120(2)	120(2)
No.	P1 (No. 2)	P1 (No. 2)		P1 (No.	2)	P1 (No. 2)	diffracto-		SMART	SMART	SMART	SMART
								meter		1000	1000	1000	1000
a (Å)	12.2103(18)	8.915(9)		8.8148(1	2)	11.7128(1	5)	abs corr		SADAB	S SADABS	SADABS	SADABS
<i>b</i> (A)	13.232(2)	12.413(12)		12.4503((17)	13.0959(1	7)	reflns		10 249	11 315	10 331	9769
()	1(002(0)	24.05(2)		22 220/2		15 01 (0/1	0)	(total)		0000	((70)	0711	5 605
c(A)	16.283(2)	24.95(2)		23.230(3	5)	15.2169(1	.9)	refins $(F_0^2 - 2\sigma(E_0^2))$	>	8080	6672	8/11	5605
a (dea)	66 210(2)	103 057(18)		102 872	(3)	80 371(2)		$2O(\Gamma_0^-)$		514	574	527	505
β (deg)	88 096(3)	91 684(18)		98 455()	(<i>3)</i> 1)	85 484(3)		R1 ^a		0.0955	0.0753	0.0448	0.0825
γ (deg)	88.014(3)	95.768(16)		94.801(2	2)	85.406(2)		$wR2^b$		0.2467	0.1860	0.1122	0.2167
$V(Å^3)$	2405.3(6)	2662(4)		2440.3(6	<i>,</i> 5)	2288.8(5)		GOF^c		1.011	1.028	1.047	1.029
z`´	2	2		2	<i>,</i>	2							

 ${}^{a} \mathrm{R1} = \sum |F_{o} - F_{c}| / \sum |F_{o}| \text{ for reflections } F_{o}^{2} > 2\sigma (F_{o}^{2}). {}^{b} \mathrm{wR2} = [\sum w(F_{o}^{2} - F_{c}^{2}) / \sum w(F_{o}^{2})]^{1/2}. {}^{c} \mathrm{GOF} = [\sum w(F_{o}^{2} - F_{c}^{2}) / \sum (n - p)]^{1/2}.$

(d, J = 13.5 Hz, 2H, SCHH'), 3.81 (vt, ${}^{3}J_{PH} = 14.5$ Hz, 36H, P(OCH₃)₃), 3.98 (d, J = 8.6 Hz, 2H, SCHH'), 4.56 (s, 4H, CH₂-CN), 7.24–7.32 (m, 2H, C₆H₅), 7.35–7.39 (m, 1H, C₆H₅), 7.88 (s, 1H, C₆H₅). ${}^{31}P{}^{1}H$ NMR (CD₃OD, 109 MHz, 233.3 K, δ): 128 (m), 130.8 (m).

6-Br: Yield: 47%. Anal. Calcd for $C_{30}H_{54}F_6N_2O_{18}P_4Ru_2S_4Br_2$: C, 24.70; H, 3.73; N, 1.92. Found: C, 24.65; H, 3.55; N, 1.88. ¹H NMR (CD₃OD, 270 MHz, 253.3 K, δ): 1.96 (s, 6H, CCH₃), 3.52 (d, J = 13.2 Hz, 2H, SCHH'), 3.87 (vt, ³ $J_{PH} = 9.7$ Hz, 36H, P(OCH₃)₃), 4.21 (d, J = 14.0 Hz, 2H, SCHH'), 4.70 (s, 4H, CH₂-CN), 7.28–7.32 (m, 2H, C₆H₅), 7.43–7.50 (m, 1H, C₆H₅), 8.15 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CD₃OD, 109 MHz, 253.3 K, δ): 130.5 (m), 132.7 (m).

Reactions with Terminal Alkenes. To a CH₃OH (1.0 mL) solution of complex 4-Cl (128.8 mg, 0.10 mmol) was added

Scheme 2. Synthesis of 4

1-pentene (0.10 mL), and the solution was stirred at ambient temperature for 1 d, followed by the removal of volatiles in vacuo. The residue was washed with Et₂O (10 mL) and dried in vacuo. The residue was then recrystallized from CH₃OH/Et₂O to give green crystals of [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CHCH₂CH₃S)(μ -Cl)₂-

Figure 1. ORTEP diagram of the cation of 4-Cl with 50% thermal ellipsoids.

Table 2. Selected Bond Distances (anstroms), Angles (deg), and Torsion Angles (deg) of $4 \mbox{ and } 5$

	4-Cl	4-Br	5-Cl	5-Br				
Bond Distances								
Ru1-P1	2.260(4)	2.2603(14)	2.206(3)	2.2220(14)				
Ru1-P2	2.257(3)	2.2570(14)	2.226(2)	2.2233(14)				
Ru2-P3	2.265(4)	2.2674(14)	2.218(3)	2.2172(14)				
Ru2-P4	2.257(4)	2.2564(15)	2.218(2)	2.2298(13)				
Ru1-S1	2.198(3)	2.2022(13)	2.292(3)	2.3053(13)				
Ru2-S2	2.198(3)	2.2103(14)	2.286(2)	2.3055(12)				
Ru1-X1	2.478(3)	2.5911(7)	2.491(2)	2.6400(7)				
Ru1-X2	2.501(3)	2.6223(7)	2.504(2)	2.6140(6)				
Ru2-X1	2.480(3)	2.5965(8)	2.495(2)	2.6342(6)				
Ru2-X2	2.514(3)	2.6289(8)	2.509(2)	2.6101(6)				
Ru1-N1	2.086(10)	2.094(5)	2.063(7)	2.068(4)				
Ru2-N2	2.081(11)	2.083(5)	2.086(7)	2.070(4)				
S1-S2	1.974(4)	1.9726(19)	1.995(3)	2.0131(18)				
	Bond Angles							
S2-S1-Ru1	110.99(16)	111.83(7)	110.01(11)	111.35(6)				
S1-S2-Ru2	110.19(15)	111.59(7)	109.01(11)	110.95(6)				
S1-Ru1-N1	176.4(3)	175.20(13)	175.99(19)	173.37(12)				
S2-Ru2-N2	176.2(3)	175.37(12)	173.7(2)	175.19(12)				
Ru1-X1-Ru2	90.50(10)	88.07(2)	90.89(8)	88.518(19)				
Ru1-X2-Ru2	89.18(10)	86.732(19)	90.28(9)	89.59(2)				
X1-Ru1-X2	80.39(10)	82.56(2)	80.53(7)	82.71(2)				
X1-Ru2-X2	80.11(10)	82.33(2)	80.36(7)	82.90(2)				
Torsion Angles ^a								
Ru1-S1-S2-Ru2	1.6(2)	2.12(9)	12.16(15)	4.71(9)				

^a Reported without the sign.

{ μ -m-C₆H₄(CH₂CN)₂}] (CF₃SO₃)₂ (7), pale-green crystals of [{Ru-(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CHCH₂CH₃SCH₃)(μ -Cl)₂{ μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (8), brown crystals of **5-Cl**, and unidentified compounds.

7: Anal. Calcd for $C_{28}H_{53}F_6N_2O_{15}P_4Ru_2S_3Cl_2$: C, 27.84; H, 4.42; N, 2.32. Found: C, 27.57; H, 4.45; N, 2.25. ¹H NMR (CD₃OD, 500 MHz, 233.3 K, δ): 1.04 (tr, J = 7.4 Hz, 3H, CH₂CH₃), 2.10 (m, 2H, CH₂CH₂CH₃), 3.24 (m, 1H, SCHH'), 3.79 (vt, ³J_{PH} = 11.3 Hz, 36H, P(OCH₃)₃), 3.90 (m, 1H, SCHH'), 4.56 (s, 2H, CH₂CN), 4.46 (s, 2H, CH₂CN), 5.68–5.80 (m, 2H, CH₂CH=CHCH₂), 7.25 (m, 2H, C₆H₅), 7.40 (m, 1H, C₆H₅), 8.18 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CD₃CN, 109 MHz, r.t., δ): 125.4 (m), 135.5 (m), 138.8 (s).

8: Anal. Calcd for C₃₀H₅₆F₆N₂O₁₈P₄Ru₂S₄Cl₂: C, 26.26; H, 4.11; N, 2.04. Found: C, 24.50; H, 3.83; N, 2.36. ¹H NMR (CD₃OD, 500 MHz, r.t., δ): 1.08 (tr, *J* = 7.5 Hz, 3H, CH₂CH₃), 2.18 (m, 2H, CH₂CH₂CH₃), 3.52 (m, 1H, SCHH'), 3.79 (vt, ³*J*_{PH} = 11.3 Hz, 36H, P(OCH₃)₃), 4.16 (m, 1H, SCHH'), 4.65 (s, 4H, CH₂CN), 5.76 (m, 1H, SCH₂CH=CHCH₂), 6.00 (m, 1H, SCH₂CH=CHCH₂),

Figure 2. ORTEP diagram of the cation of 6-Cl with 50% thermal ellipsoids.

Figure 3. ORTEP diagram of the cation of 6-Br with 50% thermal ellipsoids.

7.30 (m, 2H, C₆ H_5), 7.45 (m, 1H, C₆ H_5), 8.08 (s, 1H, C₆ H_5). ³¹P-{¹H} NMR (CD₃OD, 109 MHz, r.t., δ): 125.4 (m).

4-Cl (128.8 mg, 0.10 mmol) and 1-hexene in CH₃OH (1.0 mL) afforded green crystals of [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CH-(CH₂)₂CH₃S)(μ -Cl)₂{ μ -m-C₆H₄(CH₂CN)₂}] (CF₃SO₃)₂ (**9**), [{Ru-(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CH(CH₂)₂CH₃SCH₃)(μ -Cl)₂ { μ -m-C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (**10**) as pale-green crystals, **5-Cl** as brown crystals, and unidentified compounds.

9: Anal. Calcd for $C_{29}H_{55}F_3N_4O_{15}P_4Ru_2S_3Cl_2$: C, 26.86; H, 4.22; N, 2.02. Found: C, 26.54; H, 4.16; N, 1.81. ¹H NMR (CD₃OD, 500 MHz, r.t., δ): 1.04 (tr, J = 7.4 Hz, 3H, CH₂CH₃), 2.10 (m, 2H, CH₂CH₂CH₃), 3.24 (m, 1H, SCHH'), 3.79 (vt, ³J_{PH} = 11.3 Hz, 36H, P(OCH₃)₃), 3.90 (m, 1H, SCHH'), 5.68-5.80 (m, 2H, CH₂CH=CHCH₂), 7.25 (m, 2H, C₆H₅), 7.40 (m, 1H, C₆H₅), 8.18 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CD₃CN, 109 MHz, r.t., δ): 125.4 (m).

10: Anal. Calcd for $C_{31}H_{58}F_6N_4O_{18}P_4Ru_2S_4Cl_2$: C, 28.51; H, 4.54; N, 2.29. Found: C, 28.83; H, 4.73; N, 2.03. ¹H NMR (CD₃-OD, 500 MHz, r.t., δ): 0.88 (tr, J = 7.1 Hz, 3H, CH₂CH₃), 1.40 (m, 2H, CH₂CH₂CH₃), 2.07 (m, 2H, CHCH₂CH₂), 3.42 (m, 1H, SCHH'), 3.81 (vt, ³ $J_{PH} = 11.3$ Hz, 36H, P(OCH₃)₃), 4.10 (m, 1H, SCHH'), 4.52 (m, 4H, CH₂CN), 5.59 (m, 1H, SCH₂CH=CHCH₂), 5.79 (m, 1H, SCH₂CH=CHCH₂), 7.30 (m, 2H, C₆H₅), 7.45 (m,

Figure 4. ORTEP diagram of 7 with 50% thermal ellipsoids.

Figure 5. ORTEP diagram of 8 with 50% thermal ellipsoids.

1H, C₆*H*₅), 8.08 (s, 1H, C₆*H*₅). ³¹P{¹H} NMR (CD₃OD, 162 MHz, 233.3 K, δ): 128.5 (m), 132 (m).

Reaction of Internal Alkenes. To a CH₃OH (1.0 mL) solution of **4-Cl** (128.8 mg, 0.10 mmol) was added 2-pentene (21.6 μ L), and the mixture was stirred at ambient temperature for 1 d, followed by the removal of volatiles in vacuo. The residue was washed with Et₂O (10 mL), dried in vacuo, and recrystallized from CH₃OH/ Et₂O to give complexes **8** and **5-Cl** and an unidentified compound.

Similarly, the reaction of 2-hexene (24.8 μ L) and 4-Cl (128.8 mg, 0.10 mmol) in CH₃OH (1.0 mL) afforded complexes 10, 5-Cl, and unidentified compounds.

Synthesis of [{Ru(P(OCH₃)₃)₂} $_{2}(\mu$ -SCH₂CH=CHCH₂S)(μ -Cl)₂{ μ -*m*-C₆H₄(CH₂CN)₂}] (CF₃SO₃)₂ (11). To a CH₃OH (1.0 mL) solution of 4-Cl (128.8 mg, 0.10 mmol) was added 4-bromo-1-butene (0.10 mL), and the solution stirred at ambient temperature for 1 d, followed by the removal of volatiles in vacuo. The residue was washed with Et₂O (10 mL) and dried in vacuo. The residue was recrystallized from CH₃OH/Et₂O to give pale-green crystals of [{Ru(P(OCH₃)₃)₂} $_{2}(\mu$ -SCH₂CH=CHCH₂S)(μ -Cl)₂{ μ -*m*-C₆H₄(CH₂-CN)₂}](CF₃SO₃)₂ (11). Yield: 77%. Anal. Calcd. for C₂₈H₅₀F₆N₄-

Scheme 4. Reaction of 4 with Diene

O₁₈P₄Ru₂S₄Cl₂: C, 25.06; H, 3.76; N, 2.09. Found: C, 24.87; H, 3.56; N, 2.10. ¹H NMR (CD₃OD, 270 MHz, 253.3K): δ 3.52 (br, 2H, CH₂CN), 3.85 (br, 18H, P(OCH₃)₃), 3.89 (br, 18H, P(OCH₃)₃), 4.23 (br, 2H, CH₂CN), 4.65 (br, 4H, CH₂CN), 6.18 (br, 2H, CH=CH), 7.28 (m, 2H, C₆H₅), 7.44 (m, 1H, C₆H₅), 8.05 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CD₃OD, 109 MHz, 253.3K): δ 130.0 (m).

Reaction with 3-Butene-1-ol. To a CH₃OH (1.0 mL) solution of **4-Cl** (128.8 mg, 0.10 mmol) was added 3-butene-1-ol (0.10 mL), and the mixture was stirred at ambient temperature for 1 d, followed by the removal of volatiles in vacuo. The residue was washed with Et₂O (10 mL) and dried in vacuo. The residue was recrystallized from CH₃OH/Et₂O to give **11** as green crystals and [{Ru-(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CHCH₂OHS)(μ -Cl)₂{ μ -m-C₆H₄(CH₂-CN)₂}] (CF₃SO₃) (**12**) as pale-green crystals. Anal. Calcd (%) for C₂₇H₅₁F₃N₂O₁₆P₄Ru₂S₃Cl₂: C, 26.80; H, 4.25; N, 2.32. Found: C, 26.11; H, 3.75; N, 2.00. ¹H NMR (CDCl₃, 500 MHz, 253.3 K, δ): 3.25 (m, 1H, SCHH'), 3.76 (vt, ³J_{PH} = 8.4 Hz, 36H, P(OCH₃)₃), 3.96 (m, 1H, SCHH'), 4.14 (d, *J* = 4.0 Hz, 2H, CH₂CH₂OH), 5.84–5.96 (m, 2H, CH₂CH=CHCH₂), 7.13 (m, 2H, C₆H₅), 7.32 (m, 1H, C₆H₅), 8.10 (s, 1H, C₆H₅). ³¹P{¹H} NMR (CDCl₃, 500 MHz, 253.3 K, δ): 137.3 (m), 140.0 (m).

X-ray Diffraction Study. The diffraction data of 4-12 were collected using a Bruker CCD SMART 1000 area detector diffractometer with graphite-monochromated Mo K α irradiation ($\lambda = 0.71073$ Å). The intensities of the reflections were integrated by the SAINT program. An absorption correction was applied for the collected data using SADABS software. Structure solutions were performed using a SHELXTL program package. Details of the crystallographic data are summarized in Table 1. All of the non-hydrogen atoms of the cations were refined anisotropically. All of the hydrogen atoms were generated and refined in ideal positions, and the positions of the SHELXTL program. The hydrocarbon moiety on the disulfido ligand in **10** looks like a C₇S₂ ninemembered ring because of the disorder of the alkenyl chain on both

sulfur atoms. Actually, β - and γ -carbons are located at two positions with almost equivalent occupancies.

Results and Discussion

Reaction of [{Ru(P(OCH₃)₃)₂X}₂(μ -S₂)(μ -X)₂] (1) with 2 equiv of AgCF₃SO₃ in CH₃OH, followed by reaction with *m*-xylylenedicyanide in CH₂Cl₂, afforded [{Ru(P(OCH₃)₃)₂}₂-(μ -S₂)(μ -X)₂{ μ -C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (4, X = Cl, 61%; X = Br, 58%) (Scheme 2).

The structure of **4** with counterions was determined by single-crystal X-ray analysis. An ORTEP of the cation of **4-Cl** is shown in Figure 1, and selected bond distances and angles are listed in Table 2.

In the cation, the two Ru(P(OCH₃)₃)₂ moieties are bridged by two halide ions, one disulfido ligand, and a *m*-xylylenedicyanide ligand. Because the phenyl ring of the dicyanide ligand in **4** and the other complexes (Figures 1–5) crystallizes in different orientations, it is thought that in solution the benzene ring of the *m*-xylylenedicyanide ligand easily moves to either side of the RuSSRu plane at room temperature or dissociates and reassociates. The ¹H NMR spectrum of **4** showed a very broad signal at r.t.; however, the methylene signals of the *m*-xylylenedicyanido ligand became sharp below 0 °C. In addition to reorientation of the phenyl rings, *m*-xylylendicyanide is easily replaced by coordinating

Scheme 6. Proposed Mechanism for C-S Bond Formation in 3

solvents, on the basis of the ¹H NMR spectrum in CD₃CN (Supporting Information). Thus, flexibility of the dicyanide ligand may be related to the unexpectedly weak coordination to the two Ru atoms.

The reaction of **4** with triphenylsilane gave the reduced complex[{Ru(P(OCH₃)₃)₂}₂(μ -S₂)(μ -X)₂{ μ -C₆H₄(CH₂CN)₂}]-(CF₃SO₃) (**5**), in which the Ru ions are mixed valence Ru^{II}/Ru^{III} (Scheme 3). **5** also formed in several other reactions, described later. **5** is inactive toward olefins. However, because **5** formed during the reaction, it is clear that a redox reaction occurred at the same time as the C–S bond formation, which gives some insight into the reaction mechanism.

4 reacts with 2,3-dimethyl-1,3-butadiene in CH₂Cl₂ to afford [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂C(CH₃)=C(CH₃)CH₂S)-(μ -Cl)₂{ μ -C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (**6**, X = Cl, 56%; X = Br, 47%), which is formally a [4 + 2] cycloaddition reaction product similar to those previously reported for **2** and **3** with a conjugated diene (Scheme 4).⁸ The structures of **6-Cl** and **6-Br** are shown in Figures 2 and 3, respectively.

Cycloaddition may occur because of the structural stability of the product and is considered as a typical reaction of the disulfido ligand in our dinuclear Ru^{III} complexes.¹⁴ The C₄S₂ six-membered ring is frequently formed through other different processes, as described later. Although 6 is stable, the molecule is flexible rather than rigid, and in solution, 6also showed fluxional behavior. Temperature dependent ¹H and ³¹P{¹H} NMR spectroscopy showed spectral changes upon changing the temperature from r.t. to 253 K (Supporting Information, ³¹P NMR spectra of 9 at r.t. and 253 K). There are two possible explanations for the observed spectra: (1) the phosphites rapidly exchange, causing an averaging of the ³¹P NMR peaks, and (2) the phenyl moiety in the dicyanide ligand moves back and forth with respect to the RuSSRu plane, as mentioned previously. For steric reasons and on the basis of the X-ray structures of the complexes, it is thought that the latter explanation is more plausible.

There are two possible mechanisms for this reaction: (1) a concerted mechanism in which bond cleavage and bond formation happen simultaneously and (2) a stepwise mechanism. However, the stepwise formation of the two C–S bonds cannot be ruled out, especially in reactions involving sulfur. Ionic or radical interactions between the terminal methylene carbon and the second S atom of the disulfidobridging ligand may occur to form a stable six-membered ring after the first C–S bond is formed. Whichever the

⁽¹⁴⁾ Sugiyama, H.; Watanabe, T.; Matsumoto, K. Chem. Lett. 2001, 306-307.

mechanism may be, the reactivity of the disulfido ligand observed with 2 toward dienes is maintained in the dicyanidebridged 4, and therefore, the reactivity of 4 was studied further.

The reaction of **4** with 1-pentene gave reduced **5** and two substrate-attached complexes (**7** and **8**) (Scheme 5). The structures of **7** and **8** are in Figures 4 and 5, respectively.

The overall charge of the ruthenium dimer species changed from 2+ to 1+ because of the release of a proton. The changes in the orbital hybridization of the carbon atoms and in the bond orders make this reaction seem similar to an ene-reaction.¹⁵ The other product 8 that contains a C₅ chain has a methyl group on the other sulfur atom of the disulfido bridge. The solvent CH₃OH is thought to be the source of the CH_3 group of 8, which was confirmed by carrying out the reaction in CD₃OD. In the ESI-MS spectrum of $8-d_3$, the peak envelope is clearly shifted 3 amu compared to that of 8, and it has the expected isotope pattern. The formation of 8, therefore, involves the addition of 1-pentene and CH₃-OH along with the elimination of H_2O . This is an unexpected and unprecedented reaction. Unlike the [4 + 2] addition reactions with conjugated dienes,⁸ the reaction with alkenes involves a C-H bond cleavage step, which also occurs in the various reactions of 3 (Scheme 1). In these reactions, a

(15) Davies, A. G.; Kinart, W. J. J. Chem. Soc., Perkin Trans. 1993, 2281.

hydrogen atom of the alkene is thought to have shifted to its final position in the product via the sulfur atom (Scheme 6).

However, there is no direct evidence. Hydrosulfido ligands are known in several other transition-metal complexes,^{16–34} and hydrogen addition from these complexes to an unsatur-

- (16) Rakowski DuBois, M.; VanDerveer, M. C.; DuBois, D. L.; Haltiwanger, D. L.; Miller, W. K. J. Am. Chem. Soc. 1980, 102, 7456–7461.
- (17) Rakowski DuBois, M.; DuBois, D. L.; VanDerveer, M. C.; Haltiwanger, R. C. *Inorg. Chem.* **1981**, *20*, 3064–3071.
- (18) Ruffing, C. J.; Rauchfuss, T. B. Organometallics 1985, 4, 524-528.
- (19) Kuwata, S.; Hidai, M. Coord. Chem. Rev. 2001, 213, 211-305.
- (20) Kabashima, S.; Kuwata, S.; Ueno, K.; Shiro, M.; Hidai, M. Angew. Chem., Int. Ed. 2000, 39, 1128–1131.
- (21) Nagano, T.; Kuwata, S.; Ishii, Y.; Hidai, M. Organometallics 2000, 19, 4176-4178.
- (22) Kuwata, S.; Kabashima, S.; Sugiyama, N.; Ishii, Y.; Hidai, M. Inorg. Chem. 2001, 40, 2034–2040.
- (23) Kuwata, S.; Nagano, T.; Matsubayashi, A.; Ishii, Y.; Hidai, M. Inorg. Chem. 2002, 41, 4324–4330.
- (24) Kuwata, S.; Hashizume, K.; Mizobe, Y.; Hidai, M. Organometallics 2002, 21, 5401–5407.
- (25) Seino, H.; Mizobe, Y.; Hidai, M. New J. Chem. 2000, 24, 907-911.
- (26) Takagi, F.; Seino, H.; Mizobe, Y.; Hidai, M. Organometallics 2002, 21, 694–699.
- (27) Kato, H.; Seino, H.; Mizobe, Y.; Hidai, M. J. Chem. Soc., Dalton Trans. 2002, 1494–1499.
- (28) Takagi, F.; Seino, H.; Hidai, M.; Mizobe, Y. J. Chem. Soc., Dalton Trans. 2002, 3603–3610.
- (29) Kato, H.; Seino, H.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 2002, 339, 188–192.
- (30) Nagao, S.; Seino, H.; Hidai, M.; Mizobe, Y. J. Organomet. Chem. 2003, 669, 124–134.

Scheme 8. Reaction of 4 with Hydroxyl- and Bromoalkenes

ated C-C bond is well known.³⁵⁻⁴¹ Unlike these other complexes, **3** does not have such a hydrosulfido moiety. However, in the initial step of the alkene and alkyne reactions, **3** generates a hydrosulfido moiety, in which the hydrogen atom is immediately trapped by the unsaturated C-C bond. The disulfido ligand of **4** could also cleave a C-H bond to form an intermediate between **4** and **7** or **8** in Scheme 5. However, the hydrodisulfido ligand eliminates a H⁺ to give **7** or undergoes condensation with CH₃OH to give **8** instead of hydrogen addition to the C=C bond. The formation of **8** strongly supports the formation of a S-H bond after C-H bond activation. Similarly, the reaction of **4** with 1-hexene gave **5**, **9**, and **10**. It is noteworthy that the

- (31) Sinozaki, A.; Seino, H.; Hidai, M.; Mizobe, Y. Organometallics 2003, 22, 4636-4638.
- (32) Wang, W.-D.; Guzei, I. A.; Espenson, J. H. Inorg. Chem. 2000, 39, 4107–4112.
- (33) Ruiz, J.; Rodriguez, V.; Vicente, C.; Marti, J. M.; Lopez, G.; Perez, J. Inorg. Chem. 2001, 40, 5354–5360.
- (34) Chatwin, S. L.; Diggle, R. A.; Jazzar, R.; Rodolphe, F. R.; MacGregor, S. A.; Mahon, M. F.; Whittlesey, M. K. *Inorg. Chem.* **2003**, *42*, 7695– 7697.
- (35) Casewit, C. J.; Coons, D. E.; Wright, L. L.; Miller, W. K.; Rakowski DuBois, M. Organometallics 1986, 5, 951–955.
- (36) Birnbaum, J.; Laurie, J. C. V.; Rakowski DuBois, M. Organometallics 1990, 9, 156–164.
- (37) Kuwata, S.; Andou, M.; Hashizume, K.; Mizobe, Y.; Hidai, M. Organometallics 1998, 17, 3429–3436.
- (38) Buil, M. L.; Elipe, S. E.; Esteruelas, M. A.; Oñate, E.; Peinado, E.; Ruiz, N. Organometallics 1997, 16, 5748–5755.
- (39) Kaiwar, S. P., Hsu, J. K.; Liable-Sands, L. M.; Rheingold, A. L.; Pilato, R. S. Inorg. Chem. 1997, 36, 4234–4240.
- (40) Kaneko, Y.; Suzuki, T.; Isobe, K. Organometallics 1998, 17, 996– 998.
- (41) Takagi, F.; Seino, H.; Mizobe, Y.; Hidai, M. Can. J. Chem. 2001, 79, 632–634.

Table 3. Selected Bond Distances (angstroms), Angles (deg), and

 Torsion Angles (deg) of 6 and 11

	6-Cl	6-Br	11			
	Bond Distances					
Ru1-S1	2.325(2)	2.305(3)	2.3096(10)			
Ru2-S2	2.313(2)	2.305(3)	2.3281(11)			
Ru1-P1	2.221(2)	2.221(3)	2.2156(11)			
Ru1-P2	2.230(2)	2.217(3)	2.2273(11)			
Ru2-P3	2.219(2)	2.215(3)	2.2201(11)			
Ru2-P4	2.222(2)	2.229(3)	2.2351(11)			
Ru1-N1	2.058(7)	2.033(9)	2.041(3)			
Ru2-N2	2.043(7)	2.032(9)	2.048(3)			
Ru1-X1	2.489(2)	2.6010(17)	2.5307(9)			
Ru1-X2	2.505(2)	2.5780(15)	2.5194(9)			
Ru2-X1	2.514(2)	2.6065(15)	2.4975(9)			
Ru2-X2	2.507(2)	2.5818(15)	2.5145(10)			
S1-S2	2.091(3)	2.165(3)	2.1044(14)			
S1-C23	1.808(8)	1.830(11)	1.815(4)			
S2-C26	1.799(8)	1.842(11)	1.816(4)			
C23-C24	1.498(11)	1.494(15)	1.510(6)			
C24-C25	1.328(11)	1.329(16)	1.324(7)			
C25-C26	1.515(10)	1.476(16)	1.508(6)			
C24-C27	1.520(10)	1.496(16)				
C25-C28	1.490(11)	1.484(15)				
	Bond Angle	s				
S1-S2-Ru2	104.41(10)	109.57(13)	103.81(5)			
S2-S1-Ru1	103.85(10)	109.62(13)	104.91(5)			
S1-Ru1-N1	168.35(18)	172.0(2)	168.02(10)			
S2-Ru2-N2	168.05(19)	172.6(2)	170.02(10)			
Ru1-X1-Ru2	93.03(7)	90.91(4)	92.60(3)			
Ru1-X2-Ru2	92.81(7)	91.99(4)	92.47(3)			
X1-Ru1-X2	80.74(7)	83.52(4)	80.09(3)			
X1-Ru2-X2	80.19(7)	83.33(5)	80.82(3)			
S1-S2-C26	94.1(3)	98.9(4)	94.61(15)			
S2-S1-C23	93.4(3)	99.1(4)	94.86(15)			
S1-C23-C24	114.0(6)	110.5(8)	109.4(3)			
S2-C26-C25	113.2(6)	109.4(8)	111.7(3)			
C23-C24-C25	128.0(7)	118.8(10)	128.0(4)			
C24-C25-C26	125.1(7)	117.9(10)	129.2(4)			
	Torsion Angles ^a					
Ru1-S1-S2-Ru2	43.59(11)	1.94(16)	42.28(5)			
C23-C24-C25-C26	4.8(14)	1.3(16)	2.3(8)			

^a Reported without the sign.

Ru^{II}Ru^{III} 5 is always formed in the reactions with terminal alkenes. Analogous reduction was observed in the reactions of 3 with less reactive substrates. For the formation of 5, both of the alkenyl and hydrogen groups on the disulfido ligand are probably released as a cation and a radical, that is, a proton and an alkenyl radical or an H radical and an alkenyl cation. Similarly, 3 is gradually reduced to the isostructural Ru^{II}Ru^{III} complex in a CH₃CN solution,² and when the reaction with the substrate is slower than the reduction reaction, the reduced product is dominantly formed. Another possible explanation is that although the C-Sformation occurs, the decomposition of the complex via C-S bond cleavage causes the reduction reaction to occur. However, 2 is not reduced at room temperature under the usual reaction conditions. In summary, 3 and 4, which react to form a C-S bond, are easily reduced to the Ru^{II}Ru^{III} complexes, whereas 2, which does not react to form a C-Sbond, is resistant to the reduction.

Although 4 can react with internal alkenes, 3 does not react with internal alkenes, except with cyclohexene.⁵ The reaction of 4 with 2-pentene gave 5 as the major product and a trace amount of 8. The reaction of 4 with 2-hexene gave complex 10, which has a C–S bond, and free 3-hexene, Scheme 7. It

Ishizu et al.

 Table 4.
 Selected Bond Distances (anstroms), Angles (deg), and Torsion Angles (deg) of 7–10 and 12

	7	9	12	8	10	
		Bond Distar	nces			
Ru1-S1	2.355(2)	2.361(2)	2.352(3)	2.324(2)	2.342(3)	
Ru2-S2	2.352(2)	2.360(3)	2.342(3)	2.340(2)	2.338(3)	
Ru1-P1	2.233(2)	2.229(2)	2.217(3)	2.2194(19)	2.226(3)	
Ru1-P2	2.216(2)	2.230(2)	2.202(3)	2.222(2)	2.243(3)	
Ru2-P3	2.197(2)	2.219(3)	2.196(3)	2.222(2)	2.227(3)	
Ru2-P4	2.223(3)	2.222(3)	2.225(4)	2.234(2)	2.221(3)	
S1-S2	2.066(3)	2.072(3)	2.039(5)	2.116(3)	2.116(4)	
$S1-C^{\alpha}$	1.862(10)	1.845(9)	1.948(16)	1.821(8)	1.823(11)	
$C^{\alpha}-C^{\beta}$	1.532(13)	1.528(17)	1.60(2)	1.537(17)	1.59(3)	
$C^{\beta}-C^{\gamma}$	1.331(16)	1.38(2)	1.24(3)	1.365(18)	1.30(4)	
$C^{\gamma}-C^{\delta}$	1.502(17)	1.48(2)	1.51(4)	1.526(18)	1.48(4)	
S2-C ^{Me}				1.805(8)	1.827(13)	
		Bond Ang	les			
S1-S2-Ru2	106.42(10)	106.42(11)	106.85(14)	104.91(9)	104.82(8)	
S2-S1-Ru1	108.11(9)	108.53(11)	106.85(14)	104.82(8)	104.46(14)	
$S2-S1-C^{\alpha}$	98.5(4)	100.4(3)	94.2(7)	100.1(3)	99.9(4)	
$S1-C^{\alpha}-C^{\beta}$	109.1(6)	107.6(8)	108.7(10)	108.3(7)	105.1(11)	
$C^{\alpha}-C^{\beta}-C^{\gamma}$	122.2(12)	120.6(13)	122(3)	122.6(13)	127(3)	
$C^{\beta}-C^{\gamma}-C^{\delta}$	125.9(15)	126.3(19)	122(3)	120.3(15)	131(4)	
S1-S2-C ^{Me}				99.8(3)	99.9(5)	
Torsion Angles ^a						
Ru1-S1-S2-Ru2	24,85(14)	22.85(14)	21.9(2)	36,93(10)	37 69(16)	
$Ru2 - S2 - S1 - C^{\alpha}$	90.2(3)	93.4(4)	90.6(4)	156 2(3)	156 2(3)	
$Ru1-S1-S2-C^{Me}$	<i>y</i> 0.2(<i>b</i>)	20.1(1)	20.0(1)	155.1(3)	157 2(5)	
$C^{\alpha}-C^{\beta}-C^{\gamma}-C^{\delta}$	175.0(10)	179.8(13)	179.1(16)	177.6(11)	177.6(11)	

^{*a*} Reported without the sign.

Table 5. Summary of the S–S Bond Distances and Ru–S–S–Ru Angles

compound	no. of C–S bonds	S-S (Å)	Ru-S-S-Ru (deg)	S-S (Å) from 3
4-Cl	0	1.974(4)	1.6 (2)	1.933(11)
5-Cl	0	1.995(3)	12.16(15)	1.995(3)
7	1	2.066(3)	24.85(14)	
9	1	2.072(3)	22.85(14)	
12	1	2.039(5)	21.9(2)	
6-Cl	2	2.091(3)	43.59(11)	2.093(5)
11	2	2.1044(14)	42.28(5)	-2.099(3)
8	2	2.116(3)	36.93(10)	
10	2	2.116(4)	37.69(11)	

is possible that isomerization also occurred in the case of 2-pentene; however, the product is the same as the starting material. In addition, on the basis of the reaction with internal alkenes, isomerization may also occur when a terminal alkene is used, to form 1-pentene and 1-hexene, which can react with the disulfido ligand. Scheme 7 shows a plausible summary of the events in the reaction of **4** with 2-alkenes. Although the reason why is not clear, the C–S bond involving a carbon atom in the chain, that is, not the terminal C atom, appears unstable.

The reactions giving **8** and **10** are examples of intermolecular dehydration, in which the first molecule (alkene) provides a proton and the second molecule (CH₃OH) provides a hydroxyl group, eliminating one molecule of H₂O. An analogous reaction has been found for the tetracationic **3**;³⁸ however, it usually involves homocoupling. Previously, the cross-coupling of propargyl alcohol and 2-butyn-1-ol was reported.⁴² However, these substrates are not significantly different. Therefore, the reactions affording **8** and **10** are unique. In contrast, intramolecular elimination is common for **3** and **4**.⁴³ Treatment of **4** with 4-bromo-1-butene results in the formation of the C₄S₂ six-membered ring complex [{Ru(P(OCH₃)₃)₂}₂(μ -SCH₂CH=CHCH₂S)(μ -Cl)₂{ μ -C₆H₄(CH₂CN)₂}](CF₃SO₃)₂ (**11**) via intramolecular elimination of HBr. The reaction of **4** with 3-butene-1-ol gives the same C₄S₂ six-membered ring (**11**) and [{Ru(P(OCH₃)₃)₂}₂-(μ -SSCH₂CH=CHCH₂OH)(μ -Cl)₂{ μ -C₆H₄(CH₂CN)₂}](CF₃-SO₃) (**12**), which has one C–S bond and a 1+ charge. These reactions suggest that the hydrogen atom of the hydrodisulfido ligand reacts as an acid, and H₂O or HBr are eliminated (Scheme 8).

Structural Study. 4-12 were characterized by X-ray diffraction as well as NMR and ESI-MS spectroscopy. The structure of **4** is shown in Figure 1. The structural parameters of 4 and 5 are summarized in Table 2. The structure of 5 is similar to 4, and therefore, the ORTEP diagram is not shown. In both complexes, the ruthenium atoms are bridged by *m*-xylylenedicyanide, of which the cyanide nitrogen atoms coordinate trans to the disulfido ligand. The S-S bond distances of Ru^{III}₂ complexes 4-Cl and 4-Br are almost equal (1.974(4) Å and 1.9726(19) Å, respectively) and are also comparable to those of previously reported disulfido complexes [{Ru(P(OCH₃)₃)₂(CH₃CN)}₂(µ-S₂)(µ-Cl)₂]²⁺ (2) (1.973-(7) Å) and $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2(\mu-S_2)]^{4+}$ (3) (1.933-(11) Å). The Ru^{II}Ru^{III} mixed valence complexes 5-Cl and **5-Br** have slightly longer S–S distances (1.995(3) Å and 2.0131(18) Å, respectively) than those of the Ru^{III}_{2} complexes. Having larger ionic radii, the two bromine atoms in **4-Br** can exert larger steric repulsion than the chlorine atoms in 4-Cl, which may cause the cation to expand in the

⁽⁴²⁾ Matsumoto, K.; Moriya, Y.; Sugiyama, H.; Hossai, M. M.; Lin, Y.-S. J. Am. Chem. Soc. 2002, 124, 13106–13113.

⁽⁴³⁾ Hatemata, S.; Sugiyama, H.; Sasaki, S.; Matsumoto, K. Inorg. Chem. 2002, 41, 6006–6012.

Figure 6. Side views of 7 and 8. The OCH₃ groups are omitted for clarity.

direction perpendicular to the RuSSRu core plane. This repulsion causes a narrower Ru-Br-Ru angle and a wider Br-Ru-Br angle in **4-Br** than those in **4-Cl**.

The structures of 6-Cl and 6-Br are shown in Figures 2 and 3, respectively, and selected bond distances and angles of 6 are summarized together with those of 11 in Table 3, in which the C23 to C26 atoms are common to the C_4S_2 rings of all three complexes. Atoms C27 and C28 are the methyl carbon atoms at the β and γ positions in **6**. The distances clearly show that the C_4S_2 ring has a C=C double bond (1.328(11), 1.329(16), and 1.323(7) Å for 6-Cl, 6-Br, and 11, respectively) and a relatively long S-S bond (2.091-(3), 2.165(3), and 2.1044(14) Å for 6-Cl, 6-Br, and 11, respectively). Although the S-S bond distances in the starting complexes 4-Cl and 4-Br are comparable, the S-S bond in 6-Br is significantly longer than those of 6-Cl and 11. The different conformations of the C_4S_2 rings, that is, complexes 6-Cl and 11 have chair type conformations (Figure 2) and 6-Br has a boat-type conformation (Figure 3), can cause the different S-S bond distances.

Selected bond distances and angles for 7-10 and 12 are summarized in Table 4, and the alkenyl C atoms are listed

Figure 7. Plot of the S-S bond distances versus the Ru-S-S-Ru angle.

from C^{α} to C^{δ} because they are common for each complex. Figures 4 and 5 show the structures of **7** and **8**, respectively. **8** has a methyl group on the disulfide. **8** and **10** with alkenyl methyl disulfido ligands have significantly longer S–S bond distances and larger Ru–S–S–Ru torsion angles compared to those of the alkenyl disulfido complexes because of the steric hindrance between alkenyl and methyl groups. In addition, the Ru2–S2-S1–C^{α} torsion angles of the alkenyl disulfido (90°) and alkenyl methyl disulfido (156°) complexes are significantly different and this difference is clearly observed in the side views of **7** and **8** in Figure 6. **6-C1** and **11** have shorter S–S bonds compared to those of **8** and **10** because the S–S bonds within the six-membered C₄S₂ rings are constrained.

Table 5 summarizes the relation between the number of C–S bonds, the S–S bond distances, and the Ru–S–S–Ru torsion angles for the chloride-bridged complexes. A plot of the S–S bond distance versus the Ru–S–S–Ru torsion angle is shown in Figure 7. There is a good correlation between the parameters. Previously, we analyzed the C–S bond formation products of **3** in the same manner, and the S–S bond distances are comparable to those in the present study.⁴⁴

Acknowledgment. This research was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), (the 21st Century COE program).

Supporting Information Available: ESI-MS of **8** prepared in CH₃OH and CD₃OD. ³¹P NMR spectra of **9** at 293 and 273 K. ¹H NMR of **4-Cl** in CD₃CN. This material is available free of charge via the Internet at http://pubs acs.org.

IC062460K

⁽⁴⁴⁾ Matsumoto, K.; Sugiyama, H. Acc. Chem. Res. 2002, 35, 915-926.